Predicting Tunnel Squeezing Using Multiclass Support Vector Machines

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiclass Proximal Support Vector Machines

This article proposes the multiclass proximal support vector machine (MPSVM) classifier, which extends the binary PSVM to the multiclass case. Unlike the one-versus-rest approach that constructs the decision rule based on multiple binary classification tasks, the proposed method considers all classes simultaneously and has better theoretical properties and empirical performance. We formulate th...

متن کامل

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

Feature selection for multiclass support vector machines

In this paper, we present and evaluate a novel method for feature selection for Multiclass Support Vector Machines (MSVM). It consists in determining the relevant features using an upper bound of generalization error proper to the multiclass case called the multiclass radius margin bound. A score derived from this bound will rank the variables in order of relevance, then, forward method will be...

متن کامل

Predicting Nucleolar Proteins Using Support-Vector Machines

The intra-nuclear organisation of proteins is based on possibly transient interactions with morphologically defined compartments like the nucleolus. The fluidity of trafficking challenges the development of models that accurately identify compartment membership for novel proteins. A growing inventory of nucleolar proteins is here used to train a support-vector machine to recognise sequence feat...

متن کامل

Multiclass Latent Locally Linear Support Vector Machines

Kernelized Support Vector Machines (SVM) have gained the status of off-the-shelf classifiers, able to deliver state of the art performance on almost any problem. Still, their practical use is constrained by their computational and memory complexity, which grows super-linearly with the number of training samples. In order to retain the low training and testing complexity of linear classifiers an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Civil Engineering

سال: 2018

ISSN: 1687-8086,1687-8094

DOI: 10.1155/2018/4543984